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Experiments by Binnie showed that unsteady waves were produced by flow through 
a channel with symmetric, wavy sidewalls, with waves propagating both upstream 
and downstream. However, the first-order solution to this problem that was obtained 
by Yih is a set of steady waves. The steady solution is shown to be unstable to a pair 
of infinitesimal disturbance waves which satisfy the resonance conditions of Phillips. 
For the Froude-number range used by Binnie, a pair of disturbances has been found 
such that one wave propagates upstream, one propagates downstream, and the 
amplitudes have an exponential growth. The Froude numbers outside the range of 
Binnie are also shown to be unstable. The steady waves produced by flow through 
an antisymmetric channel are shown to be unstable in the same manner. 

1. Introduction 
The flow through a wavy-walled channel was first studied by Binnie (1960). His 

study consisted of a set of experiments where water flowed through several channels 
of different size with the intent of studying waves that result from the walls of the 
channel having a corrugated surface. The flow velocity, water depth, and wall 
corrugation were all varied during Binnie’s investigation. The results of the 
experiments showed that a purely steady solution was never observed €or any flow 
velocity, water depth, or wall corrugation. The resulting flow in each channel had 
waves that propagated both upstream and downstream, and the water surface was 
rather turbulent. Binnie measured the wavelengths and periods of the waves and 
noted that the measurement of wavelength was difficult due to an unsteady ‘ beating ’ 
motion of the free surface. 

Yih (1982) studied the problem of Binnie (1960) analytically and found a steady 
solution for waves in a wavy-walled channel where the walls were symmetric about 
the centre of the channel, as they were in the experiments of Binnie (1960). The 
waves that resulted from the steady solution of Yih (1982) have a diamond 
pattern. 

Yih (1983) also studied the waves that result when the walls of a wavy-walled 
channel are not symmetric about the centre of the channel but are antisymmetric 
(in-phase) with one another. The solution of Yih (1983) is a steady wave pattern, 
similar to the symmetric case. There are no published results of systematic 
experiments on waves created by water flowing through an antisymmetric, wavy- 
walled channel. 

The demonstration of instability of basic waves requires disturbances which 
interact with the basic waves and grow with time. Phillips (1960) has shown that 
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waves will interact only if there are (at least) three wavetrains present, and if the 
waves satisfy the following resonance conditions : 

v1 = v2 + vo, (1.1) 

k,  = k,+k, .  (1.2) 

The frequency of a particular wave train is v and the wavenumber vector is k .  A 
complete discussion of these relations is given by Phillips (1977). 

In  Phillips’ studies, three free wavetrains interact and energy flows among them. 
I n  this study, the primary waves are created by a stream flowing between the wavy 
walls, and energy flows from the primary waves to two disturbance wavetrains. The 
problem is therefore regarded as one of stability. 

The stability of surface waves is a problem that has been studied extensively, and 
centres on the stability of the well-known Stokesian waves (see Stokes 1847), which are 
periodic, nonlinear, propagating waves in a semi-infinite fluid. Benjamin (1967) has 
shown that Stokesian waves are unstable to waves with sideband frequencies. 
Whitham (1967) has reached the same result using a variational method. Both 
Benjamin and Whitham showed that Stokesian waves are stable for small values of 
wave slope. 

The present investigation follows the approach of Yih (1976), who showed that the 
waves created by flow over a wavy bottom a t  any Froude number are unstable to a 
pair of disturbance waves. The disturbance waves and the primary waves again must 
satisfy Phillips resonance conditions. Yih (1976) showed that the waves over a wavy 
bottom are unstable for any wavenumber of the bottom shape. 

One important difference between Yih’s investigation and those of Phillips, 
Benjamin, and Whitham is that  Yih (1976) studied the stability of bound waves in 
a stream flowing at any Froude number, whereas the waves investigated by the 
others are free waves. Stronger instability is found for the bound waves using the 
approach of Yih (1976). 

It will be demonstrated that the flow of a homogeneous fluid through a wavy- 
walled channel, with either symmetric walls or antisymmetric walls, is unstable to a 
pair of disturbance waves. 

2. Basic equations 
The problem under consideration is the flow of a liquid through a channel with 

wavy sides. The bottom of the channel is flat and the top is a free surface. Cartesian 
coordinates are chosen with the z-axis parallel to the centreline of the channel, the 
9-axis across the channel, and the x-axis pointing vertically upward. The coordinate 
x is chosen for convenience to have a value of zero a t  the mean level of the free 
surface. A script letter indicates a dimensional quantity. 

The average depth of the channel is h. The sides of the channel are straight in the 
x-direction, and have a sinusoidal shape in the rc-direction. Two types of channel will 
be treated. One has opposite walls that are symmetric about the 9 = 0 plane. This is 
the type of channel investigated experimentally by Rinnie (1960). The shape of the 
wall for these symmetric walls is given by 

9 = - L - a  sinkrc, y = + L + a  sinkz, 

where L is the half-width of the channel, k is the wavenumber of the side corrugation, 
and a is the amplitude of the side corrugation. The second wall shape considered has 
antisymmetric walls, such that one wall is in-phase with the opposite wall. Flow in 
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FIGURE 1 .  Channel shapes. 

this type of channel was discussed analytically by Yih (1983). The wall shape for the 
antisymmetric walls is given by 

y = + L + a s i n I % x ,  9 = - L + a s i n k z .  

The channel shape and the coordinate system for both channels are shown in 
figure 1. 

The liquid flows in the positive x-direction with a speed of U ,  where U is defined 
as the average of the x-component of velocity across any (y ,  %)-plane. The velocity 
components in the x-, y- and x-directions are demoted by u, v and w ,  respectively. 
It is convenient at this point to non-dimensionalize the variables. Let the lengthscale 
be the mean half-width of the channel, L, and the velocity scale be the mean free- 
stream velocity, U .  The non-dimensional variables are given by 

t% V w x Y x 
u = -  v = -  w=- x = -  y = -  

U’ U’ U’ L’ L’ = Z‘ 
The problem will be solved in completely non-dimensional variables. 

terms of which the velocity can be expressed: 
The flow is assumed irrotational, and a velocity potential, $, will be employed, in 

u = & ,  v =  $y’ w = $ z ,  

$22 + $yy + $22 = 0, 

The subscripts x, y and z indicate partial differentiation. The velocity potential must 
satisfy Laplace’s equation, 

(2.1) 

along with the following solid boundary conditions : 

$ ,=O a t  z = - d ,  (2.2) 

$n = O  on the sidewalls, (2.3) 
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where n is the distance normal to the sidewalls a t  any point and d is the dimensionless 

h water depth given by 
a = -  

L' (2.4) 

The two boundary conditions that must be met a t  the free surface are the kinematic 
condition, 

and the dynamic condition, 
1 

Qt++[@+@,+43+jjy7 = constant on x = 7, 

where F is the Froude number, 
T T  

and 7 is the vertical elevation of the free-surface. Equations (2.1)-(2.6) define the 
boundary-value problem for flow through a wavy-walled channel. 

3. Mean flows 
Before discussing the steady solution to (2.1)-(2.6), the difficulty of meeting the 

boundary condition at the wavy sidewalls can be eliminated by using the coordinate 
transformation of Yih (1982). For symmetric wavy walls the transformation is given 

I bY 

The Jacobian is 

x = a + a sin k a  cosh k p ,  
y = /3+a cos k a  sinh k/3. 

(3.2) J = -  a(x' = 1 + 2ak cos k a  cosh k p +  a' k2 {cos2 k a  + sinh' k p } .  
a(a> P )  

For antisymmetric channels, the transformation is 

(3.3) 

(3.4) 
The boundary of the channel for either channel shape is now a t  p = f 1, and the 
boundary condition a t  the sidewalls is 

1 y = a +a sin k a  sinh k p ,  
y = p+ a cos k a  cosh k p ,  

and the Jacobian is 

J = 1 +2ak coska sinhkp+a2k2 (sinh2kp+sin2ka). 

$ p = O  a t p = + l .  (3.5) 
The problem can now be more easily solved in (a ,  p,z)-coordinates. Note that for 
p = f 1, (3.1) and (3.3) give only approximately the boundaries specified previously. 

(3.6) 

In terms of a,  /3 and z ,  Laplace's equation becomes 

J-l($hm + (bpp) + $22 = 0. 

The kinematic free-surface boundary condition, (2.5), becomes 

4 t + J - ' ( 4 , r a + $ p T g )  = $ z  on 2 = 7, (3.7) 
and the dynamic free-surface condition, (2.6), is now 
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The condition a t  the bottom of the channel does not change, and is still given by 
(2.2). 

Equations (3.7) and (3.8) are combined by eliminating 7 to get 

(3.9) 

which must be satisfied on z = 7. The derivatives with respect to time have been set 
to zero in (3.9) for steady waves. Expand $ in a power series: 

q5 = $o+a$ l+a2~2+a3$3+. . . ,  (3.10) 

where a is the amplitude of the side variation. Yih (1982) presents the following 
solution to order a for symmetric channels: 

m 

4 = a + a C B, sin ka cos nntp cosh y, (z  + d )  (3.11) 
n-0 

where y, is determined from Laplace’s equation to be 

7, = ( k2 + n2 nz)i, (3.12) 

and B, is given by 
B, C, y i  = 2k3 ( - l),+l sinh k, 

C, = - k2 cosh y, d + FP2 y, sinh y, d.  (3.13) 

The wave elevation to order a is 
m 

7 = - ak-I cos ka E B, y, sinh y, d cos nntp. (3.14) 
n-0 

For antisymmetric channels, the solution to order a given by Yih (1983) is 

m 

$ = a+a E B,  sin ka sin (n-h) ntp cosh y, (z+d) ,  (3.15) 
n-1 

where y, is determined from Laplace’s equation to be 

(3.16) 

B, C, y i  = 2k3( - l)a cosh k, (3.17) 

and C, is as before. The free-surface elevation is given by 

m 

7 = -ak-’ cos La B,  y, sinh y, d sin (n-i) n/3. (3.18) 

Equations (3.11) and (3.14) will be referred to as the mean flow for symmetric 
channels. Equations (3.15) and (3.18) will be referred to as the mean flow for 
antisymmetric channels. The waves described in this section will be called primary 
waves. 

n=l  

4. Stability equations 
In  order to show that the mean flows described above are unstable, a small 

disturbance will be added to the mean flow, and inserted into the equation of motion 
and boundary conditions. Before discussing the form of the disturbance, these 
equations will be developed in their general form. The transformation of coordinates 
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that was used to find the mean flow is convenient also in showing the instability of 
the mean flow. Hence, the stability analysis will be conducted in (a, /3, 2)-coordinates. 

Assume that the solution to (2.21, (3.5), (3.6), (3.7) and (3.8) is the sum of a mean 
flow and a disturbance : 

$=@+$, 7=C+r" 

where @ is the velocity potential for the mean flow, $ is the potential for a small 
disturbance, y is the surface elevation for the mean flow, and 7 is the surface elevation 
for the disturbance. Note that the $ in (3.11) and (3.15) is now denoted by @, and 
7 in (3.14) and (3.18) is now denoted by g. The stability problem will be formulated 
in terms of the mean and disturbance quantities only, hence the tildes on the 
disturbance quantities may be dropped. The disturbance quantities are henceforth 
represented by $ and 7. 

Substitution of (4.1) into Laplace's equation produces 

J-' (L + $pp) + $zz = 0. (4-2) 

The bottom and sidewall boundary conditions on the disturbance quantities are 

$ , = O  o n z = - h ,  (4.3) 

$ p = O  o n p = ? l .  (4.4) 

Substituting (4.1) into the free-surface boundary conditions, one obtains 

$2 = ~t +J-' [@a ~a + $a Q+ @ p ~ p +  $pCpI, (4.5) 

$t+J-' [@a$a+@p$P]+@2$z+F-2r = constant, (4.6) 

which must be satisfied on z = [ + T .  Note that the products of the disturbance 
quantities have been neglected. The derivatives of the disturbance potential in (4.5) 
and (4.6) must be evaluated on the free surface, i.e. z = <+7.  This condition is met 
to each increasing order by expanding the disturbance potential in a Taylor series 
about z = 0, producing 

$2 + ~ $ z z  = Tt +J-l [ @ a ~ a  + $a Q + @,?I!+ $pCpI, 

$t + @zt +J-' [@a $a + @a C$za + @p $pI + $z  $ z  + FP2 7 = constant, 

where it is now understood that the derivatives of $ are evaluated a t  z = 0. These two 
conditions are combined by eliminating 7 to give 

J 3  $tt +2J2 @a $at +2@p$pt + (Ca + @ z )  $22 + (@m - Ja-F-  $a 

+ (@ap-F- 'Cp)$p + ( J3F-2+@az)$z+J@~$,+2@8$ap+(Ca++z)$az  

+FP2 C$zz + C$ttz + '[$at2 + <$am = 0. (4.7) 

Equation (4.7) is the free-surface boundary condition for the disturbance potential, 
accurate to  order a. 

5. Instability 
Using (4.7), i t  will be shown that the disturbance and the mean flow will interact, 

,resulting in exponential growth of the disturbance with time, and indicating that the 
mean flow is unstable to some infinitesimal disturbances. The disturbance will be a 
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pair of gravity waves of infinitesimal wave height satisfying the resonance conditions 
given by (1.1) and (1.2). 

The primary waves studied here consist of an infinite sum of wave components 
that have crests that are not straight in (x, y)-space, but are straight in the (a,P)- 
space, and with wavenumbers that have a p-component as well as an a-component. 
To show that this oblique wave is unstable, the disturbance waves must also have a 
wavenumber that has both an a-component and ap-component. The variation in the 
a-direction for the disturbance potential (as yet unspecified) is chosen to be an 
exponential function. The mean flow must also be expressed in this way. Hence, the 
mean-flow equations for symmetric channels, (3.1 1)-(3.14) are equivalent to 

00 

@ = a - ia 1. 2 (eika - ePika) C B, cos nnp cosh y, ( z  + d ) ,  

5 = -a- (elka + e-ika) C B, yn cos nnp sinh y, d.  

(5.1) 

(5 .2 )  

n=o 

m 1 .  

21% 12-0 

The Jacobian of the coordinate transformation is now 

J = l+alc(eika+e-iLa) coshEP+O(a2). (5.3) 

Similarly for antisymmetric channels : 
m 

) C B,  sin(n-$)xpcoshy,(z+d), (5.4) 

(5.5) 

(5.6) 

@ = a + ia 2 (eika - e-ika 

n=l 

m 
C = -  a-(e'"+e~ika) C B, y, sin(n-+)n/3 sinhh,d, 

J = 1 + ak(eika + e-ika) sinh k p +  O(a2). 

2k n=1 

The disturbance waves are chosen to satisfy by themselves (2.2), (3.5), (3.6), (3.7) 
and (3.8) in their linear forms. There are two kinds of waves (in either a symmetric 
or antisymmetric channel) that can be found to satisfy these equations : symmetric 
about the p = 0 plane and antisymmetric about the ,f3 = 0 plane. The disturbance 
potentials for symmetric disturbances in a symmetric channel are chosen to be 

cos Lnp cosh yL ( x  + d), 

cosM@ cosh y M  ( z  + d). 

sin ( L  - +) np cosh yL ( z  + d ) ,  

(5.7) 

(5-8) 

$m = Bei(ma-ut) 

$m, ei(m'a-ut) 

The disturbance potentials for antisymmetric disturbances in a symmetric channel 
are 

(5.9) # m  = eei(ma-W 

#m, = ei(m'a-ut) sin (M - $) np cosh yM ( z  + d), (5.10) 

gnd the disturbances in an antisymmetric channel are 

$m = Eei(ma-ut) sin (L-$) np cosh yL ( z  + d ) ,  (5.11) 

$m, = e' ei(m'a-d) cos M n p  cosh y M  ( z  +d), (5.12) 

where L a n d M  are any positive integers (except zero in (5.9), (5.10) and (5.11)). The 
use of I; also for the channel half-width should not introduce confusion. The wave 
amplitudes, c and E' ,  are assumed to be small enough so that their squares are 
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negligible. The sum of any of the above pairs of potentials is the disturbance 

(5.13) 
potential in (4.7), i.e. 4 = 4 m  + 9 , s .  
Substituting q5m and $m, separately into Laplace's equation produces 

where 

I yk = m2+ L:n2, 
y& = m'2 +M2i  n2. 

L = O , 1 , 2  ,..., i f i = l ,  

L-$, L = 1 , 2 , 3  ,..., i f i = 2 o r 3 ,  

(5.14) 

M = 0 , 1 , 2  ,..., i f i = l o r 3 ,  M ,  =(". 
M - i ,  M = 1 , 2 , 3  ,..., i f i = 2 ,  

where i = 1 ,  2 or 3 is valid for symmetric channels with symmetric disturbances, 
symmetric channels with antisymmetric disturbances, or antisymmetric channels 
with one symmetric disturbance and one antisymmetric disturbance, respectively. 

The free-surface boundary condition, (4.7), gives? 

A, = m f [F-' yL tanh yL &I:, 1 
A, = m' f [F2 y M  tanh yM d ] i J  

(5.15) 

where the higher-order terms have been neglected and the free-surface condition is 
applied a t  z = 0, as for well-known infinitesimal waves. 

The two disturbance wavetrains and the primary waves make up the wave triad 
which must satisfy the resonance condition for frequency, i.e. crl = cr2 + uo. The 
primary waves are stationary for which vo = 0, hence the resonance condition 
becomes cr1 = cr2, which is shown in the disturbance potentials as cr. To demonstrate 
the instability of the mean flow, an expression for cr must be obtained when the mean 
flow and the disturbance waves exist simultaneously. This is accomplished by 
inserting the mean-flow potential, free-surface elevation for the mean flow, and the 
disturbance potential into the free-surface boundary condition, (4.7). After (4.7) has 
been expanded in this manner, the resulting terms are classified as free-wave terms 
or interaction terms (i.e. the term J3& in (4.7) produces a free-wave term of order 
a and interaction terms of order a€).  The free-wave terms would be unchanged if there 
were no primary waves and the disturbance waves were being studied by themselves. 
The interaction terms are the nonlinear interactions between the mean flow and the 
disturbance waves. To show that the disturbance will grow with time, the interaction 
terms that have the same wavenumber vector as the free-wave terms are collected. 
It will be shown that the existence of such terms indicates that the mean flow and 
disturbances are interacting and exchanging energy. 

The interaction terms that appear in the expansion of (4.7) have the form 

m 
ei(ma-ut) e ika  cos Lnp C Gn cosnnp, 

n=o 
(5.16) 

or other similar forms. These terms will have the same wavenumber vector as the 
free-wave terms ((5.16) will produce terms like (5.8)) when 

m' = m+k,  M = L + n .  (5.17a, b )  

t The reason for the notation for CT, namely A,, will become apparent later in the discussion. 
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Kctaring in mind that  the frcqueneies of the disturbances have bwn assumed to  be 
identical. (5.17) assurrs that  the resonance conditions are satisfid. 

For a chosen wall shape and disturbance combination. prowed by collecting the 
coefficients of tcrms in (4.7) which have the same wavenumhcr vector as 9,. and then 
f i m ,  producing two expressions which are given by McHugh (1986). _low cr is 
expanded as a power series in a :  

(5.18) 

This expansion is inscrtcd into (4.7) and the free-wave terms are subtracted, leaving 
two homogcneoux expressions in e and E‘ which determine h ,  The result is 

f7 = A, + ah, + O(a2). 

(5.16) 

whert~ GI = ( &  1 ) M , 7 c [ 2 h n + k - 2 ~ ~ ’ ] ~ , , - ( ~ ~ ) 2 k - ’ F - 2 , ~ ~ , ~ ~ , z  

+ [ k ’ y ,  tanh y ~ d { - ( h 0 - m ’ ) 2 - k ( 2 A 0 + k - 2 n ~ ’ ) )  
- 17L‘ F-2 + k-1 F-2 - k m ‘ [ 2 h O + k - 2 m ’ ] 4 , ,  

+ 16A;- 8h, m’+2km’+ 2m“ -6F-, yIM tanh y M  d ]  k&, 1 .  

G‘, = (i- 1 )  L,7c[2h0-k-2m] &,t-  ( k 1 )  2k-IF-’ L,x G,, 
+[k-’  yL tanh y L d { - ( A o - m ’ ) 2 + k ( 2 A o - k - 2 2 m ) }  

+ r n P 2  + k-’ F-‘ yL] G, , - km(2h0 - k - am] &, 
+ [6A~-8A0m-2km+2m2-6F-2yL tanh ~ ~ d ] & , ~ .  

In  the above equations for GI and G, the interpretation of (k 1) is as follows 
for i = 1. the positive is used. for i = 2, the negative is used, and for i = 3. the 
negative is used in G, and the positive in G,. 
The above expressions are valid for either symmetric or antisyrnmetric channels, 
depending on the value of the index i. For i = 1. the value of G , t  in (5.19) is defined 

(5.20) 

to  be 

i f L + O , M = O o r L = O , M  + 0 ,  

if L =k 0.M =+ 0. 
if L = M * 0, 

Kone if L = M = 0, 

C,,, l + C I L - m l , j  if L + 05M =k 0, 
2COd $ C L + M . J  i f L = M * O ,  
C L $ 3  or C M ?  3’ if 1, i O , M  = 0 or L = 0,M + 0, I 2Co,3 if i, = M = 0. 

(5.21) 

I CL+M,I +C, L-MI , 3  

r ( - 1 or 2) = ‘,+,,, 3 , a  3 - 
C L J  or Gl>j i 

& ( j  = 3, 4 or 5) = 

(5.22) 
where C,, = B, nn cosh y n  d,  Cn3 = B, y, nn sinh y, d ,  

Ca, = B, y, sinh y, d ,  Cn3 = B, cosh 7, d,  
y:Cns5 = 2ks inhk( - l )n .  

For i = 2, < , i  are defined to  be 

(5.23) 
i f L = M ,  

I;, (j = 1 or 2) = {2i; ,,-, wl,j+CI,+M-l,j if 1, i iv: 

2c,, j - C L ,  j if L = M, 
q, C I L - M l j ,  -CL+M-l,j if L + ill. (j = 3, 4 or 5) = } (5.24) 
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The value of C n 3 j  is defined again by (5.22). For i = 3, the value of q,i is defined by 
(5.20) and (5.21), and C7L, j  are defined by (5.22), except for 

1 (5.25) 
C,,l= B,(n-+)ncoshy,d, C n , 2 =  B,y,(n-~)nsinhy,d,  

7; C%, = 2k cash k ( -  l),+'. I 
The mean flow is unstable if y; is less than zero for any combination of L,  M ,  m 
and m' that satisfies the resonance conditions. 

6.  Unstable modes 

frequency for the steady waves is zero, hence (1 .1 )  results in 
Phillips' resonance conditions must be satisfied for any interaction to occur. The 

(TI = (T2 = 0-. 

The first-order approximation for 0- is given by (5.15). Solving for A, in each of (5.15) 
and equating, then using (5.17 a ) ,  gives 

m {F2 [m2 + L2 n2]1" tanh [m2 + L2 n2f d}; 

= (m+ k) +(F-'[(m+ k ) 2  + M 2  n']: tanh [(m+ k)' +M2n2]4d}2. (6.1) 

The wavenumbers that demonstrate instability must satisfy (6.1). For a chosen set 
of F ,  k, d ,  L and M ,  the values of m that  satisfy (6.1) can be found numerically. Using 
this value of m, corresponding values of m' and A, can be found from (5.15), thereby 
completely defining the disturbance wavetrains. 

Numerical values of m, A, and A;, are given by McHugh (1986) for a non- 
dimensional depth d of unity and Froude numbers greater than unity. These results 
are similar to previous results found by Yih (1976) for flow over a wavy bottom. It 
is clear from the results of McHugh (1986) for d = 1 and F > 1, that  the flow is always 
unstable, and the instability results from two disturbance waves that propagate 
downstream. Furthermore, there is only one pair of two-dimensional disturbance 
waves that can cause instability. There are, however, three-dimensional disturbances 
that can also cause instability in this range. 

Now consider Proude numbers less than unity. Each of (5.15) can be expressed 
as 

(A,-m)2 = FP2 y tanh yd, (6.2) 

where y = m for two-dimensional disturbances. The left-hand side and the right- 
hand side of (6.2) are plotted versus m in figure 2 for a Froude number of 0.5 and a 
depth of unity. For the chosen value of A,, there are four intersections of the two 
curves in figure 2. Any pair of crossing points gives a set of the required disturbance 
wavetrains which satisfy (6.2) ; the value of k being the distance along the abscissa 
between the two crossing points. Hence the four intersections in figure 2 give six pairs 
of mm'  values. However, for a fixed value of k, there is a maximum of two pairs of 
disturbance wavetrains (type 1 and type 2) that satisfy the resonance conditions and 
could lead to an instability. Figure 3 is a plot of the values of m that satisfy the 
resonance conditions for a Froude number of 0.5 and values of k up to 10. The values 
of A, corresponding to  figure 3 are given in figure 4, and the resulting values of A; are 
in figure 5. 

The type-1 waves and the type-2 waves do not have a significant feature that easily 
distinguishes them from each other. Either type of wave, depending on the value of 
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FIGURE 2. Left-hand side and right-hand side of (6.2) versus m for Froude number of 0.5. 

k 
FIGURE 3. Disturbance wavenumbers for a Froude number of 0.5, a dimensionless depth of 1.0 and 

L = M = O .  
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FIGURE 4. Frequency of disturbances for a Froude number of 0.5, a dimensionless depth of 1 .0 and 

L = M = 0 .  
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FIGURE 5. Values of A; for a Froude number of 0.5, a dimensionless depth of 1.0 and L = M = 0. 

k, can have sets of mrn’  where m is negative and m’ is positive, or vice versa. This 
means that one disturbance wave travels upstream and the other travels 
downstream. Both upstream- and downstream-propagating waves were seen by 
Binnie . 

The type-1 waves give negative values of A:, as shown in figure 5, hence the flow 
is unstable to these disturbances. The value of A: for the type-1 waves become 
positive for 7 < k < 8 approximately. Since the type-2 waves do not exist for this 
range of k, it would appear that the flow is stable over this range of k .  However this 
is not the case, and it will be demonstrated shortly that three-dimensional 
disturbances lead to instability for this range of k. 

The value of A: in figure 5 goes to  infinity with k equal to  4 for both types of 
disturbances. This character is not attributable to the stability of the flow, but to the 
resonant condition of the primary waves. The denominator of (3.13), which gives the 
amplitude of the primary waves for values of k and F ,  contains C,. C, is zero for 
k = 4 and a Froude number of 0.5, resulting in an infinite value of B,, which is the 
amplitude of the primary waves for n = 0 .  (The disturbances with L =  M = 0  
interact with the term in (3.11) with n = 0.) The infinite value of B, cause A: to be 
infinite also. Hence the large absolute values of A: near k = 4 may be artificial. Flow 
over a wavy bottom has a similar resonance, where the amplitude determined from 
the first-order approximation is infinite. W. Ellermeier (1983, personal com- 
munication) has shown for the wavy-bottom problem that when the perturbation 
theory is extended to the third order, the steady wave amplitude obtained is finite. 
This is likely to be true for the amplitude of the primary waves produced by the flow 
through the wavy-walled channels being studied here. However, it can be seen from 
figures 3 and 4 that  a zero value of C, results in a zero value for m and A, in the 
calculation of the disturbance. Hence the resonant value for k is also a singular point 
for the resonance conditi0ns.t Simmons (1969) has pointed out that such singular 
points result in secular behaviour of the stability solution. Therefore, if the stability 
analysis were carried out to the third order and the value of B,  was finite a t  the 
resonant value of k, as in Ellermeier, the solution for (T might still be secular owing 
to the singular behaviour of the resonance conditions. 

The author is indebted to a referee for pointing this out, and for the reference by 
Simmons. 
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Another difference between the results for wavy bottoms and wavy sides is for 
type-1 waves with 7 < k < 8. For the wavy-bottom problem, the value of G (G is 
similar to A:) as given by Yih (1976) or McHugh (1986) decreases monotonically, 
while for the wavy-sided channel, the value of A; is positive before going to negative 
infinity. This difference is due to the direct interaction between the disturbance 
waves and the wavy sidewalls, which does not occur for the wavy-bottom case. This 
interaction is represented in (4.7) by terms containing J ,  such as J3#,,, and in (5.19) 
by terms containing C%,5. If these terms are removed from (5.19), the resulting 
values of A; would decrease monotonically to infinity, as for the wavy-bottom case. 
Hence, the wavy sidewalls can be a stabilizing influence for certain flow conditions. 

The values of m that satisfy the resonance conditions for various values of d ,  the 
dimensionless depth, are given by McHugh (1986) with corresponding values of A,, 
and A:. For a depth of 0.1, the value of A: has been found to be positive for all I% 
shown, indicating a stable flow. (Type-2 waves do not exist for a depth of 0.1.) The 
non-dimensional depth d is the dimensional depth divided by the half-width of the 
channel. Therefore, a small value of d could correspond to shallow water, or to a 
channel with the walls very far apart. The latter is significant since the positive 
values of A; show that the flow through a wavy-walled channel can be stable if the 
walls are far enough apart. This explains how the bound waves near a curved wall 
in open water (such as the bound waves from a ship hull) can be stable while similar 
waves in a confined channel are not stable. 

7. Three-dimensional disturbances 
Consider now the more general cabe when both disturbances have non-zero 

wavenumbers in both the a- and P-direction. The flow can be unstable to such 
disturbances if a combination of L, M ,  m and m’ can be found that satisfies (6.1) 
given the characteristics of the flow. Again (6.2) is used to show which types of 
disturbances exist, except now y 2  = p 2 n 2  +m2, and p is a positive integer. Figure 6 
contains a plot of the left-hand side of (6.2) and the right-hand side of (6.2) versus 
m for a series of values ofp.  The point where the left-hand side of (6.2) intersects any 
of the curves representing the right-hand side of (6.2) corresponds to a value of m and 
L or m’ and M that satisfies (6.2). The distance along the abscissa between any two 
such intersections is the value of k that satisfies the resonance relations for those 
values of m, m‘, L and M .  It is clear from figure 6 that the left-hand side intersects 
many of the curves of the right-hand side for a given value of k. However, for chosen 
non-zero values of L and M there are only two crossings between the curves in fig- 
ure 6, representing one set of disturbance waves that satisfy the resonance con- 
ditions. With a value of L = 0 and M =!= 0, there are two types of waves, analogous to 
the two wave types for L = M = 0 in figure 2. Values of m for the type-1 waves are 
shown in figure 7 for L = 0, 1, 2 with M = 0, a Froude number of 0.5, and a depth 
of unity. Corresponding values of h, and A: are given in figures 8 and 9, respectively. 
Figure 9 shows that instability can be caused by three-dimensional disturbances. 

The discussion of instability of flow through symmetric wavy walls to this point 
has concerned only symmetric disturbances. For antisymmetric disturbances, (6.1) is 
still valid, except now 

yL = (L-+)2n2+m2,  y h  = (M-L 2 )  x2+m’2. 

Since L and M cannot be zero for antisymmetric disturbances, these disturbances do 
not exist for the low range of k being considered. 
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FIGURE 6. Left-hand side and right-hand side of (6.2) versus m for a Froude number less than unity 
and with L or M not equal to zero. 

4 

2 

i n o  

-2  

-4 
0 5 

k 
10 

FIGURE 7. Disturbance wavenumbers for waves of type 1,  a Froude number of 0.5, a dimensionless 
depth of 1.0, L + 0 and M = 0. 
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FIGURE 8. Frequency of type-1 disturbances for a Froude number of 0.5, a dimensionless depth of 
1.0, L =# 0 and M = 0. 

k 
FIGURE 9. Values of A; for type-1 waves with a Froude number of 0.5, a dimensionless depth of 1.0, 

L 3 0 and M = 0. 

8. Antisymmetric channels 
Now antisymmetric channels will be considered briefly. The solution for the mean 

flow for antisymmetric channels given by (3.15) contains no term for n = 0. This 
means that every term in (3.15) has a dependence on p, and that a t  least one of the 
disturbances must have a dependence on p, i.e. a t  least one of the disturbances must 
be three-dimensional to satisfy the resonance conditions. 

The instability in antisymmetric channels is similar to that in symmetric channels. 
There are, again, two types of disturbance waves that can cause instability for a 
chosen value of k. However, this is only true when the disturbance pair consists of 
one two-dimensional and one three-dimensional wave. Only one disturbance wave 
exists when both the disturbances are three-dimensional. 

For the test conditions of Binnie, disturbances with an upstream wave and a 
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downstream wave have been found, which lead to instability. Therefore, if Binnie’s 
experiments were repeated in an antisymmetric channel, i t  is likely that a similar 
instability would again be witnessed. 

9. Comparison with Binnie’s experiments 
Binnie measured or noted several distinctive features of the unsteady waves 

present in his experiments : (i) both an upstream and a downstream component were 
visible ; (ii) the waves either had no transverse component of wavenumber or, more 
commonly, a transverse wavelength equal to the channel width; (iii) an accurate 
measure of the period; and (iv) an approximate measure of the longitudinal 
wavelength. Binnie used the transverse and longitudinal wavelengths to calculate a 
wave period, and found that the calculated period was close to the measured period 
(Binnie actually compared wave speed instead of period). The premise of this study 
is that the visible wavetrains of Binnie were one of a pair of disturbance wavetrains 
that satisfied the resonance conditions and were unstable. Considering this, the 
measured wavelengths and period of Binnie must define one of the two disturbance 
wavetrains. The question that must be answered is: What is the other disturbance 
wavetrain, and do the wavetrains result in a negative value of A;, indicating 
instability ? 

To answer this question, table 1 a gives one of the test conditions of Binnie, along 
with associated dimensionless quantities defined previously. Using the basic channel 
and flow conditions of Binnie (i.e. k ,  F and d ) ,  an infinite number of disturbance 
wavetrains can be found that satisfy the resonance conditions, simply by allowing L 
or M to vary to infinity. The particular disturbance pair that is guilty of the 
instability in the experiments is the one with one of the disturbance waves matching, 
a t  least approximately: the measurements of Binnie. Table 1 b contains disturbance 
pairs that closely match the test conditions of Binnie, and satisfy the resonance 
conditions. The frequency of each disturbance pair in table 1 b is 5.86, matching the 
measured value in table 1 a. The disturbances were found by choosing L and M ,  then 
allowing F to vary until the proper value for the frequency was achieved. This means 
that F and m do not match the experimental value exactly, and the disturbance that 
matches closest is likely to be the culprit. Only the disturbances that had a Froude 
number reasonably close to the measured value are shown. Note that there are no 
disturbances that exactly match all of measurements of Binnie. Disturbance (vi) in 
table 1 ( b )  is quite close to all the parameters, with one exception. The values for m 
and m’ are both positive, indicating both disturbance waves are propagating 
downstream. Binnie noted an upstream component as well. 

Yih (1983) suggested that the instability found by Binnie was caused by a 
modulation in the channel shape, resulting in the walls containing wavelengths other 
than the ones listed. Furthermore, Yih noticed that the wavenumbers of Binnie were 
always an approximate multiple of the corrugation wavenumbers k ,  and suggested 
that the disturbance wavenumber m, was equal to  k divided by an integer. To test 
this hypothesis of Yih, disturbances (viii)-(xii) are given in table l ( 6 )  each satisfying 
the resonance conditions with a value of k = 6.60 ( k / p  where p is 2 for this particular 
experiment of Binnie). Disturbance (xii) again matches the measurements of Binnie 
quite well, and has an upstream and downstream component. However, the value of 
A;, which is proportional to the growth rate, for all the disturbances with a k of 6.6 
is of order lo6, while disturbances with a k of 13.19 (the actual k of the sidewalls) have 
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(a )  Binnie’s measurements for one example case : 

Channel width 12.6 in. 
Wavelength 6 in. 
Stream velocity 0.88 ft/s 
Depth 8.40 in. 
Period 0.64 s 
Corrugation wavelength 3 in. 
F 0.214 
k 13.19 
d 1.33 
m 6.60 
A* 5.86 

( b )  Disturbances which satisfy the resonance conditions and give A, = 5.86: 

(i) 13.19 0.193 -12.17 1.02 0 0 0.135 x 1014 
(ii) 13.19 0.185 -15.41 -2.22 0 0 - 0 . 2 7 5 ~  1014 

(iii) 6.60 0.207 -5.52 1.08 0 0 0.547 x lo6 

4 k F m m’ L M  

(iv) 6.60 0.200 -9.99 33.39 0 0 - 4 . 1 8 ~  lo6 
(v) 13.19 0.197 -12.17 1.02 1 o -0.45~1014 

(viii) 6.60 0.203 -10.46 -3.86 1 0 0.27 x 1014 
(ix) 13.19 0.230 3.95 -12.14 1 7 -2.67 x lOI4  

(xi) 13.19 0.195 12.73 25.82 1 9 - 2 . 3 4 ~  1014 

TABLE 1. Comparison with the experiments of Binnie 

(vi) 13.19 0.187 -15.47 -2.28 1 0 0.51 x 10.14 
(vii) 6.60 0.223 -5.43 1.17 1 0 - 4 . 0 4 ~ 1 0 ~  

(x) 13.19 0.220 7.06 20.25 1 8 - 2 . 6 6 ~  10l4 

(xii) 6.60 0.302 6.60 0 4 1 - 1 4 . 1 7 ~ 1 0 ~  

a A; of order 1014. The disturbance with the larger growth rate would be expected to 
dominate. 

Hence, a disturbance that matches all of Binnie’s observations and has a dominant 
growth rate has not yet been found. It is possible that the instability was not a result 
of disturbances satisfying Phillips resonance conditions, but was in fact a result of 
some nonlinearity not yet discovered. The study of a viscous flow could prove to be 
particularly illuminating. 

10. Conclusions 
The following general conclusions can be drawn from the preceding discussion : 
(i) The steady waves in both a symmetric and an antisymmetric channel are 

unstable, for any wavelength of the side corrugation, to disturbances that satisfy the 
Phillips resonance conditions. 

(ii) For the Froude number, depth, and corrugation-wavelength ranges of the 
experiments of Binnie (1960), the steady waves in a symmetric channel are unstable 
to  two disturbance wavetrains (which satisfy the Phillips resonance conditions), one 
of which propagates upstream and the other downstream. The steady waves in an 
antisymmetric channel are also unstable in the same way. 

(iii) For all values of d ,  the depth over the half-length, the steady waves in a 
corrugated channel are stable. Hence the steady waves in a channel can be stabilized 
by moving the walls of the channel further apart, or by reducing the depth. 

17 FCM 189 
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many helpful discussions during the course of the work. 
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